Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Infect Dis ; 75(1): e473-e481, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2008514

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 infection may be associated with a prothrombotic state, predisposing patients for a progressive disease course. We investigated whether rivaroxaban, a direct oral anticoagulant factor Xa inhibitor, would reduce coronavirus disease 2019 (COVID-19) progression. METHODS: Adults (N = 497) with mild COVID-19 symptoms and at high risk for COVID-19 progression based on age, body mass index, or comorbidity were randomized 1:1 to either daily oral rivaroxaban 10 mg (N = 246) or placebo equivalent (N = 251) for 21 days and followed to day 35. Primary end points were safety and progression. Absolute difference in progression risk was assessed using a stratified Miettinen and Nurminen method. RESULTS: The study was terminated after 497 of the target 600 participants were enrolled due to a prespecified interim analysis of the first 200 participants that crossed the futility boundary for the primary efficacy end point in the intent-to-treat population. Enrollees were 85% aged <65 years; 60% female; 27% Hispanic, Black, or other minorities; and 69% with ≥2 comorbidities. Rivaroxaban was well tolerated. Disease progression rates were 46 of 222 (20.7%) in rivaroxaban vs 44 of 222 (19.8%) in placebo groups, with a risk difference of -1.0 (95% confidence interval, -6.4 to 8.4; P = .78). CONCLUSIONS: We did not demonstrate an impact of rivaroxaban on disease progression in high-risk adults with mild COVID-19. There remains a critical public health gap in identifying scalable effective therapies for high-risk people in the outpatient setting to prevent COVID-19 progression.


Subject(s)
COVID-19 Drug Treatment , Adult , Disease Progression , Double-Blind Method , Female , Humans , Male , Rivaroxaban/therapeutic use , SARS-CoV-2 , Treatment Outcome
2.
Eur Respir Rev ; 31(164)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1892170

ABSTRACT

Tuberculosis (TB) remains a leading infectious cause of death worldwide and the coronavirus disease 2019 pandemic has negatively impacted the global TB burden of disease indicators. If the targets of TB mortality and incidence reduction set by the international community are to be met, new more effective adult and adolescent TB vaccines are urgently needed. There are several new vaccine candidates at different stages of clinical development. Given the limited funding for vaccine development, it is crucial that trial designs are as efficient as possible. Prevention of infection (POI) approaches offer an attractive opportunity to accelerate new candidate vaccines to advance into large and expensive prevention of disease (POD) efficacy trials. However, POI approaches are limited by imperfect current tools to measure Mycobacterium tuberculosis infection end-points. POD trials need to carefully consider the type and number of microbiological tests that define TB disease and, if efficacy against subclinical (asymptomatic) TB disease is to be tested, POD trials need to explore how best to define and measure this form of TB. Prevention of recurrence trials are an alternative approach to generate proof of concept for efficacy, but optimal timing of vaccination relative to treatment must still be explored. Novel and efficient approaches to efficacy trial design, in addition to an increasing number of candidates entering phase 2-3 trials, would accelerate the long-standing quest for a new TB vaccine.


Subject(s)
Clinical Trials as Topic , Tuberculosis Vaccines , Vaccine Development , Adolescent , Adult , COVID-19/prevention & control , Clinical Trials as Topic/methods , Humans , Mycobacterium tuberculosis , Research Design , Tuberculosis/prevention & control
3.
Lancet Glob Health ; 9(5): e711-e720, 2021 05.
Article in English | MEDLINE | ID: covidwho-1189095

ABSTRACT

COVID-19 has had negative repercussions on the entire global population. Despite there being a common goal that should have unified resources and efforts, there have been an overwhelmingly large number of clinical trials that have been registered that are of questionable methodological quality. As the final paper of this Series, we discuss how the medical research community has responded to COVID-19. We recognise the incredible pressure that this pandemic has put on researchers, regulators, and policy makers, all of whom were doing their best to move quickly but safely in a time of tremendous uncertainty. However, the research community's response to the COVID-19 pandemic has prominently highlighted many fundamental issues that exist in clinical trial research under the current system and its incentive structures. The COVID-19 pandemic has not only re-emphasised the importance of well designed randomised clinical trials but also highlighted the need for large-scale clinical trials structured according to a master protocol in a coordinated and collaborative manner. There is also a need for structures and incentives to enable faster data sharing of anonymised datasets, and a need to provide similar opportunities to those in high-income countries for clinical trial research in low-resource regions where clinical trial research receives considerably less research funding.


Subject(s)
Biomedical Research/trends , COVID-19/epidemiology , Global Health , Humans , Randomized Controlled Trials as Topic
4.
Trials ; 21(1): 1014, 2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-966433

ABSTRACT

OBJECTIVES: SARS-Cov-2 virus preferentially binds to the Angiotensin Converting Enzyme 2 (ACE2) on alveolar epithelial type II cells, initiating an inflammatory response and tissue damage which may impair surfactant synthesis contributing to alveolar collapse, worsening hypoxia and leading to respiratory failure. The objective of this study is to evaluate the feasibility, safety and efficacy of nebulised surfactant in COVID-19 adult patients requiring mechanical ventilation for respiratory failure. TRIAL DESIGN: This study is a dose-escalating randomized open-label clinical trial of 20 COVID-19 patients. PARTICIPANTS: This study is conducted in two centres: University Hospital Southampton and University College London Hospitals. Eligible participants are aged ≥18, hospitalised with COVID-19 (confirmed by PCR), who require endotracheal intubation and are enrolled within 24 hours of mechanical ventilation. For patients unable to consent, assent is obtained from a personal legal representative (PerLR) or professional legal representative (ProfLR) prior to enrolment. The following are exclusion criteria: imminent expected death within 24 hours; specific contraindications to surfactant administration (e.g. known allergy, pneumothorax, pulmonary hemorrhage); known or suspected pregnancy; stage 4 chronic kidney disease or requiring dialysis (i.e., eGFR < 30); liver failure (Child-Pugh Class C); anticipated transfer to another hospital, which is not a study site, within 72 hours; current or recent (within 1 month) participation in another study that, in the opinion of the investigator, would prevent enrollment for safety reasons; and declined consent or assent. INTERVENTION AND COMPARATOR: Intervention: The study is based on an investigational drug/device combination product. The surfactant product is Bovactant (Alveofact®), a natural animal derived (bovine) lung surfactant formulated as a lyophilized powder in 108 mg vials and reconstituted to 45 mg/mL in buffer supplied in a prefilled syringe. It is isolated by lung lavage and, by weight, is a mixture of: phospholipid (75% phosphatidylcholine, 13% phosphatidylglycerol, 3% phosphatidylethanolamine, 1% phosphatidylinositol and 1% sphingomyelin), 5% cholesterol, 1% lipid-soluble surfactant-associated proteins (SP-B and SP-C), very low levels of free fatty acid, lyso-phosphatidylcholine, water and 0.3% calcium. The Drug Delivery Device is the AeroFact-COVID™ nebulizer, an investigational device based on the Aerogen® Solo vibrating mesh nebulizer. The timing and escalation dosing plans for the surfactant are as follows. Cohort 1: Three patients will receive 10 vials (1080 mg) each of surfactant at dosing times of 0 hours, 8 hours and 24 hours. 2 controls with no placebo intervention. Cohort 2: Three patients will receive 10 vials (1080 mg) of surfactant at dosing times of 0 hours and 8 hours, and 30 vials (3240 mg) at a dosing time of 24 hours. 2 controls with no placebo intervention. Cohort 3: Three patients will receive 10 vials (1080 mg) of surfactant at a dosing time of 0 hours, and 30 vials (3240 mg) at dosing times of 8 hours and 24 hours. 2 controls with no placebo intervention. Cohort 4: Three patients will receive 30 (3240 mg) vials each of surfactant at dosing times of 0 hours, 8 hours and 24 hours. 2 controls. 2 controls with no placebo intervention. The trial steering committee, advised by the data monitoring committee, will review trial progression and dose escalation/maintenance/reduction after each cohort is completed (48-hour primary outcome timepoint reached) based on available feasibility, adverse event, safety and efficacy data. The trial will not be discontinued on the basis of lack of efficacy. The trial may be stopped early on the basis of safety or feasibility concerns. Comparator: No placebo intervention. All participants will receive usual standard of care in accordance with the local policies for mechanically ventilated patients and all other treatments will be left to the discretion of the attending physician. MAIN OUTCOMES: The co-primary outcome is the improvement in oxygenation (PaO2/FiO2 ratio) and pulmonary ventilation (Ventilation Index (VI), where VI = [RR x (PIP - PEEP) × PaCO2]/1000) at 48 hours after study initiation. The secondary outcomes include frequency and severity of adverse events (AEs), Adverse Device Effects (ADEs), Serious Adverse Events (SAEs) and Serious Adverse Device Events (SADEs), change in pulmonary compliance, change in positive end-expiratory pressure (PEEP) requirement of ventilatory support at 24 and 48 hours after study initiation, clinical improvement defined by time to one improvement point on the ordinal scale described in the WHO master protocol (2020) recorded while hospitalised, days of mechanical ventilation, mechanical ventilator free days (VFD) at day 21, length of intensive care unit stay, number of days hospitalised and mortality at day 28. Exploratory end points will include quantification of SARS-CoV-2 viral load from tracheal aspirates using PCR, surfactant dynamics (synthesis and turnover) and function (surface tension reduction) from deep tracheal aspirate samples (DTAS), surfactant phospholipid concentrations in plasma and DTAS, inflammatory markers (cellular and cytokine) in plasma and DTAS, and blood oxidative stress markers. RANDOMISATION: After informed assent, patients fulfilling inclusion criteria will be randomised to 3:2 for the treatment and control arms using an internet-based block randomization service (ALEA tool for clinical trials, FormsVision BV) in combination with electronic data collection. Randomisation will be done by the recruiting centre with a unique subject identifier specific to that centre. BLINDING (MASKING): This is an open-labelled unblinded study. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The total sample size is 20 COVID-19 mechanically ventilated patients (12 intervention; 8 control). TRIAL STATUS: Current protocol version is V2 dated 5th of June 2020. The recruitment is currently ongoing and started on the 14th of October 2020. The anticipated study completion date is November 2021. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04362059 (Registered 24 April 2020), EUDAMED number: CIV-GB-20-06-033328, EudraCT number: 2020-001886-35 (Registered 11 May 2020) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
COVID-19 Drug Treatment , Nebulizers and Vaporizers/standards , SARS-CoV-2/genetics , Surface-Active Agents/therapeutic use , Adult , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Feasibility Studies , Humans , Intensive Care Units/statistics & numerical data , London/epidemiology , Mortality/trends , Nebulizers and Vaporizers/statistics & numerical data , Respiration, Artificial/methods , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , Safety , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry , Treatment Outcome , Ventilation/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL